# NAME Compression::Util - Implementation of various techniques used in data compression. # SYNOPSIS ```perl use 5.036; use Getopt::Std qw(getopts); use Compression::Util qw(:all); use constant {CHUNK_SIZE => 1 << 17}; local $Compression::Util::VERBOSE = 0; getopts('d', \my %opts); sub compress ($fh, $out_fh) { while (read($fh, (my $chunk), CHUNK_SIZE)) { print $out_fh bwt_compress($chunk); } } sub decompress ($fh, $out_fh) { while (!eof($fh)) { print $out_fh bwt_decompress($fh); } } $opts{d} ? decompress(\*STDIN, \*STDOUT) : compress(\*STDIN, \*STDOUT); ``` # DESCRIPTION **Compression::Util** is a function-based module, implementing various techniques used in data compression, such as: * Burrows-Wheeler transform * Move-to-front transform * Huffman Coding * Arithmetic Coding (in fixed bits) * Run-length encoding * Fibonacci coding * Elias gamma/omega coding * Delta coding * BWT-based compression * LZ77/LZSS compression * LZW compression * Bzip2 (de)compression * Gzip (de)compression The provided techniques can be easily combined in various ways to create powerful compressors, such as the Bzip2 compressor, which is a pipeline of the following methods: 1. Run-length encoding (RLE4) 2. Burrows-Wheeler transform (BWT) 3. Move-to-front transform (MTF) 4. Zero run-length encoding (ZRLE) 5. Huffman coding A simple BWT-based compression method (similar to Bzip2) is provided by the function `bwt_compress()`, which can be explicitly implemented as: ```perl use 5.036; use Compression::Util qw(:all); my $data = do { open my $fh, '<:raw', $^X; local $/; <$fh> }; my $rle4 = rle4_encode(string2symbols($data)); my ($bwt, $idx) = bwt_encode(symbols2string($rle4)); my ($mtf, $alphabet) = mtf_encode(string2symbols($bwt)); my $rle = zrle_encode($mtf); my $enc = pack('N', $idx) . encode_alphabet($alphabet) . create_huffman_entry($rle); say "Original size : ", length($data); say "Compressed size: ", length($enc); # Decompress the result bwt_decompress($enc) eq $data or die "decompression error"; ``` ## TERMINOLOGY ### bit A bit value is either `1` or `0`. ### bitstring A bitstring is a string containing only 1s and 0s. ### byte A byte value is an integer between `0` and `255`, inclusive. ### string A string means a binary (non-UTF\*) string. ### symbols An array of symbols means an array of non-negative integer values. ### filehandle A filehandle is denoted by `$fh`. The encoding of file-handles must be set to `:raw`. # PACKAGE VARIABLES **Compression::Util** provides the following package variables: ```perl $Compression::Util::VERBOSE = 0; # true to enable verbose/debug mode $Compression::Util::LZ_MIN_LEN = 4; # minimum match length in LZ parsing $Compression::Util::LZ_MAX_LEN = 1 << 15; # maximum match length in LZ parsing $Compression::Util::LZ_MAX_DIST = ~0; # maximum back-reference distance allowed $Compression::Util::LZ_MAX_CHAIN_LEN = 32; # how many recent positions to remember for each match in LZ parsing ``` These package variables can also be imported as: ```perl use Compression::Util qw( $LZ_MIN_LEN $LZ_MAX_LEN $LZ_MAX_DIST $LZ_MAX_CHAIN_LEN ); ``` ## $LZ\_MIN\_LEN Minimum length of a match in LZ parsing. The value must be an integer greater than or equal to `2`. Larger values will result in faster parsing, but lower compression ratio. By default, `$LZ_MIN_LEN` is set to `4`. **NOTE:** for `lzss_encode_fast()` is recommended to set `$LZ_MIN_LEN = 5`, which will result in slightly better compression ratio. ## $LZ\_MAX\_LEN Maximum length of a match in LZ parsing. The value must be an integer greater than or equal to `0`. By default, `$LZ_MAX_LEN` is set to `32768`. **NOTE:** the functions `lz77_encode()` and `lzb_compress()` will ignore this value and will always use unlimited match lengths. ## $LZ\_MAX\_DIST Maximum back-reference distance allowed in LZ parsing. Smaller values will result in faster parsing, but lower compression ratio. By default, the value is unlimited, meaning that arbitrarily large back-references will be generated. **NOTE:** the function `lzb_compress()` will ignore this value and will always use the value `2**16 - 1` as the maximum back-reference distance. ## $LZ\_MAX\_CHAIN\_LEN The value of `$LZ_MAX_CHAIN_LEN` controls the amount of recent positions to remember for each matched prefix. A larger value results in better compression, finding longer matches, at the expense of speed. By default, `$LZ_MAX_CHAIN_LEN` is set to `32`. **NOTE:** the function `lzss_encode_fast()` will ignore this value, always using a value of `1`. # HIGH-LEVEL FUNCTIONS ```perl create_huffman_entry(\@symbols) # Create a Huffman Coding block decode_huffman_entry($fh) # Decode a Huffman Coding block create_ac_entry(\@symbols) # Create an Arithmetic Coding block decode_ac_entry($fh) # Decode an Arithmetic Coding block create_adaptive_ac_entry(\@symbols) # Create an Adaptive Arithmetic Coding block decode_adaptive_ac_entry($fh) # Decode an Adaptive Arithmetic Coding block mrl_compress($string) # MRL compression (MTF+ZRLE+RLE4+Huffman coding) mrl_decompress($fh) # Inverse of the above method mrl_compress_symbolic(\@symbols) # Symbolic MRL compression (MTF+ZRLE+RLE4+Huffman coding) mrl_decompress_symbolic($fh) # Inverse of the above method bwt_compress($string) # BWT-based compression (RLE4+BWT+MTF+ZRLE+Huffman coding) bwt_decompress($fh) # Inverse of the above method bwt_compress_symbolic(\@symbols) # Symbolic BWT-based compression (RLE4+sBWT+MTF+ZRLE+Huffman coding) bwt_decompress_symbolic($fh) # Inverse of the above method bzip2_compress($string) # Compress a given string using the Bzip2 format bzip2_decompress($fh) # Inverse of the above method gzip_compress($string) # Compress a given string using the Gzip format gzip_decompress($fh) # Inverse of the above method lzss_compress($string) # LZSS + DEFLATE-like encoding of lengths and distances lzss_decompress($fh) # Inverse of the above method lzss_compress_symbolic(\@symbols) # Symbolic LZSS + DEFLATE-like encoding of lengths and distances lzss_decompress_symbolic($fh) # Inverse of the above method lz77_compress($string) # LZ77 + Huffman coding of lengths and literals + OBH for distances lz77_decompress($fh) # Inverse of the above method lz77_compress_symbolic(\@symbols) # Symbolic LZ77 + Huffman coding of lengths and literals + OBH for distances lz77_decompress_symbolic($fh) # Inverse of the above method lzb_compress($string) # LZSS compression, using a byte-aligned encoding method, similar to LZ4 lzb_decompress($fh) # Inverse of the above method lzw_compress($string) # LZW + abc_encode() compression lzw_decompress($fh) # Inverse of the above method ``` # MEDIUM-LEVEL FUNCTIONS ```perl deltas(\@ints) # Computes the differences between integers accumulate(\@deltas) # Inverse of the above method delta_encode(\@ints) # Delta+RLE encoding of an array-ref of integers delta_decode($fh) # Inverse of the above method fibonacci_encode(\@symbols) # Fibonacci coding of an array-ref of symbols fibonacci_decode($fh) # Inverse of the above method elias_gamma_encode(\@symbols) # Elias Gamma coding method of an array-ref of symbols elias_gamma_decode($fh) # Inverse of the above method elias_omega_encode(\@symbols) # Elias Omega coding method of an array-ref of symbols elias_omega_decode($fh) # Inverse of the above method abc_encode(\@symbols) # Adaptive Binary Concatenation method of an array-ref of symbols abc_decode($fh) # Inverse of the above method obh_encode(\@symbols) # Offset bits + Huffman coding of an array-ref of symbols obh_decode($fh) # Inverse of the above method bwt_encode($string) # Burrows-Wheeler transform bwt_decode($bwt, $idx) # Inverse of Burrows-Wheeler transform bwt_encode_symbolic(\@symbols) # Burrows-Wheeler transform over an array-ref of symbols bwt_decode_symbolic(\@bwt, $idx) # Inverse of symbolic Burrows-Wheeler transform mtf_encode(\@symbols) # Move-to-front transform mtf_decode(\@mtf, \@alphabet) # Inverse of the above method encode_alphabet(\@alphabet) # Encode an alphabet of symbols into a binary string decode_alphabet($fh) # Inverse of the above method encode_alphabet_256(\@alphabet) # Encode an alphabet of symbols (limited to [0..255]) into a binary string decode_alphabet_256($fh) # Inverse of the above method frequencies(\@symbols) # Returns a dictionary with symbol frequencies run_length(\@symbols, $max=undef) # Run-length encoding, returning a 2D array-ref rle4_encode(\@symbols, $max=255) # Run-length encoding with 4 or more consecutive characters rle4_decode(\@rle4) # Inverse of the above method zrle_encode(\@symbols) # Run-length encoding of zeros zrle_decode(\@zrle) # Inverse of the above method ac_encode(\@symbols) # Arithmetic Coding applied on an array-ref of symbols ac_decode($bitstring, \%freq) # Inverse of the above method adaptive_ac_encode(\@symbols) # Adaptive Arithmetic Coding applied on an array-ref of symbols adaptive_ac_decode($bitstring, \@alphabet) # Inverse of the above method lzw_encode($string) # LZW encoding of a given string lzw_decode(\@symbols) # Inverse of the above method ``` # LOW-LEVEL FUNCTIONS ```perl crc32($string, $prev_crc = 0) # Compute the CRC32 value of a given string read_bit($fh, \$buffer) # Read one bit from file-handle (MSB) read_bit_lsb($fh, \$buffer) # Read one bit from file-handle (LSB) read_bits($fh, $len) # Read `$len` bits from file-handle (MSB) read_bits_lsb($fh, $len) # Read `$len` bits from file-handle (LSB) int2bits($symbol, $size) # Convert an integer to bits of width `$size` (MSB) int2bits_lsb($symbol, $size) # Convert an integer to bits of width `$size` (LSB) bits2int($fh, $size, \$buffer) # Inverse of `int2bits()` bits2int_lsb($fh, $size, \$buffer) # Inverse of `int2bits_lsb()` bytes2int($fh, $n) # Read `$n` bytes from file-handle as an integer (MSB) bytes2int_lsb($fh, $n) # Read `$n` bytes from file-handle as an integer (LSB) int2bytes($symbol, $size) # Convert an integer into `$size` bytes. (MSB) int2bytes_lsb($symbol, $size) # Convert an integer into `$size` bytes. (LSB) string2symbols($string) # Returns an array-ref of code points symbols2string(\@symbols) # Returns a string, given an array-ref of code points read_null_terminated($fh) # Read a binary string that ends with NULL ("\0") binary_vrl_encode($bitstring) # Binary variable run-length encoding binary_vrl_decode($bitstring) # Binary variable run-length decoding bwt_sort($string) # Burrows-Wheeler sorting bwt_sort_symbolic(\@symbols) # Burrows-Wheeler sorting, applied on an array-ref of symbols huffman_encode(\@symbols, \%dict) # Huffman encoding huffman_decode($bitstring, \%dict) # Huffman decoding, given a string of bits huffman_from_freq(\%freq) # Create Huffman dictionaries, given an hash-ref of frequencies huffman_from_symbols(\@symbols) # Create Huffman dictionaries, given an array-ref of symbols huffman_from_code_lengths(\@lens) # Create canonical Huffman codes, given an array-ref of code lengths make_deflate_tables($max_dist, $max_len) # Returns the DEFLATE tables for distance and length symbols find_deflate_index($value, \@table) # Returns the index in a DEFLATE table, given a numerical value lzss_encode($string) # LZSS encoding into literals, distances and lengths lzss_encode_symbolic(\@symbols) # LZSS encoding into literals, distances and lengths (symbolic) lzss_encode_fast($string) # Fast-LZSS encoding into literals, distances and lengths lzss_encode_fast_symbolic(\@symbols) # Fast-LZSS encoding into literals, distances and lengths (symbolic) lzss_decode(\@lits, \@dist, \@lens) # Inverse of lzss_encode() and lzss_encode_fast() lzss_decode_symbolic(\@lits, \@dist, \@lens) # Inverse of lzss_encode_symbolic() and lzss_encode_fast_symbolic() lz77_encode($string) # LZ77 encoding into literals, distances, lengths and matches lz77_encode_symbolic(\@symbols) # LZ77 encoding into literals, distances, lengths and matches (symbolic) lz77_decode(\@lits, \@dist, \@lens, \@matches) # Inverse of lz77_encode() lz77_decode_symbolic(\@lits, \@dist, \@lens, \@matches) # Inverse of lz77_encode_symbolic() deflate_encode(\@lits, \@dist, \@lens) # DEFLATE-like encoding of values returned by lzss_encode() deflate_decode($fh) # Inverse of the above method ``` # INTERFACE FOR HIGH-LEVEL FUNCTIONS ## create\_huffman\_entry ```perl my $string = create_huffman_entry(\@symbols); ``` High-level function that generates a Huffman coding block, given an array-ref of symbols. ## decode\_huffman\_entry ```perl my $symbols = decode_huffman_entry($fh); my $symbols = decode_huffman_entry($string); ``` Inverse of `create_huffman_entry()`. ## create\_ac\_entry ```perl my $string = create_ac_entry(\@symbols); ``` High-level function that generates an Arithmetic Coding block, given an array-ref of symbols. ## decode\_ac\_entry ```perl my $symbols = decode_ac_entry($fh); my $symbols = decode_ac_entry($string); ``` Inverse of `create_ac_entry()`. ## create\_adaptive\_ac\_entry ```perl my $string = create_adaptive_ac_entry(\@symbols); ``` High-level function that generates an Adaptive Arithmetic Coding block, given an array-ref of symbols. ## decode\_adaptive\_ac\_entry ```perl my $symbols = decode_adaptive_ac_entry($fh); my $symbols = decode_adaptive_ac_entry($string); ``` Inverse of `create_adaptive_ac_entry()`. ## lz77\_compress / lz77\_compress\_symbolic ```perl # With Huffman coding my $string = lz77_compress($data); my $string = lz77_compress(\@symbols); # With Arithmetic Coding my $string = lz77_compress($data, \&create_ac_entry); # Using Fast-LZSS parsing + Huffman coding my $string = lz77_compress($data, \&create_huffman_entry, \&lzss_encode_fast); ``` High-level function that performs LZ77 compression on the provided data, using the pipeline: 1. lz77_encode 2. create_huffman_entry(literals) 3. create_huffman_entry(lengths) 4. create_huffman_entry(matches) 5. obh_encode(distances) The function accepts either a string or an array-ref of symbols as the first argument. ## lz77\_decompress / lz77\_decompress\_symbolic ```perl # With Huffman coding my $data = lz77_decompress($fh); my $data = lz77_decompress($string); # With Arithemtic coding my $data = lz77_decompress($fh, \&decode_ac_entry); my $data = lz77_decompress($string, \&decode_ac_entry); # Symbolic, with Huffman coding my $symbols = lz77_decompress_symbolic($fh); my $symbols = lz77_decompress_symbolic($string); ``` Inverse of `lz77_compress()` and `lz77_compress_symbolic()`, respectively. ## lzss\_compress / lzss\_compress\_symbolic ```perl # With Huffman coding my $string = lzss_compress($data); my $string = lzss_compress(\@symbols); # With Arithmetic Coding my $string = lzss_compress($data, \&create_ac_entry); # Using Fast-LZSS parsing + Huffman coding my $string = lzss_compress($data, \&create_huffman_entry, \&lzss_encode_fast); ``` High-level function that performs LZSS (Lempel-Ziv-Storer-Szymanski) compression on the provided data, using the pipeline: 1. lzss_encode 2. deflate_encode The function accepts either a string or an array-ref of symbols as the first argument. ## lzss\_decompress / lzss\_decompress\_symbolic ```perl # With Huffman coding my $data = lzss_decompress($fh); my $data = lzss_decompress($string); # With Arithmetic coding my $data = lzss_decompress($fh, \&decode_ac_entry); my $data = lzss_decompress($string, \&decode_ac_entry); # Symbolic, with Huffman coding my $symbols = lzss_decompress_symbolic($fh); my $symbols = lzss_decompress_symbolic($string); ``` Inverse of `lzss_compress()` and `lzss_compress_symbolic()`, respectively. ## lzb\_compress ```perl my $string = lzb_compress($data); my $string = lzb_compress($data, \&lzss_encode_fast); # with fast-LZ parsing ``` High-level function that performs byte-oriented LZSS compression, inspired by LZ4. ## lzb\_decompress ```perl my $data = lzb_decompress($fh); my $data = lzb_decompress($string); ``` Inverse of `lzb_compress()`. ## lzw\_compress ```perl my $string = lzw_compress($data); ``` High-level function that performs LZW (Lempel-Ziv-Welch) compression on the provided data, using the pipeline: 1. lzw_encode 2. abc_encode ## lzw\_decompress ```perl my $data = lzw_decompress($fh); my $data = lzw_decompress($string); ``` Performs Lempel-Ziv-Welch (LZW) decompression on the provided string or file-handle. Inverse of `lzw_compress()`. ## bwt\_compress ```perl # Using Huffman Coding my $string = bwt_compress($data); # Using Arithmetic Coding my $string = bwt_compress($data, \&create_ac_entry); ``` High-level function that performs BWT-based compression on the provided data, using the pipeline: 1. rle4_encode 2. bwt_encode 3. mtf_encode 4. zrle_encode 5. create_huffman_entry ## bwt\_decompress ```perl # With Huffman coding my $data = bwt_decompress($fh); my $data = bwt_decompress($string); # With Arithmetic coding my $data = bwt_decompress($fh, \&decode_ac_entry); my $data = bwt_decompress($string, \&decode_ac_entry); ``` Inverse of `bwt_compress()`. ## bwt\_compress\_symbolic ```perl # Does Huffman coding my $string = bwt_compress_symbolic(\@symbols); # Does Arithmetic coding my $string = bwt_compress_symbolic(\@symbols, \&create_ac_entry); ``` Similar to `bwt_compress()`, except that it accepts an arbitrary array-ref of non-negative integer values as input. It is also a bit slower on large inputs. ## bwt\_decompress\_symbolic ```perl # Using Huffman coding my $symbols = bwt_decompress_symbolic($fh); my $symbols = bwt_decompress_symbolic($string); # Using Arithmetic coding my $symbols = bwt_decompress_symbolic($fh, \&decode_ac_entry); my $symbols = bwt_decompress_symbolic($string, \&decode_ac_entry); ``` Inverse of `bwt_compress_symbolic()`. ## bzip2\_compress ```perl my $string = bzip2_compress($data); my $string = bzip2_compress($fh); ``` Valid Bzip2 compressor, given a string or an input file-handle. ## bzip2\_decompress ```perl my $data = bzip2_decompress($string); my $data = bzip2_decompress($fh); ``` Valid Bzip2 decompressor, given a string or an input file-handle. ## gzip\_compress ```perl my $string = gzip_compress($fh); my $string = gzip_compress($data); my $string = gzip_compress($data, \&lzss_encode_fast); # using fast LZ-parsing ``` Valid Gzip compressor, given a string or an input file-handle. ## gzip\_decompress ```perl my $data = gzip_decompress($string); my $data = gzip_decompress($fh); ``` Valid Bzip2 decompressor, given a string or an input file-handle. ## mrl\_compress / mrl\_compress\_symbolic ```perl # Does Huffman coding my $enc = mrl_compress($str); my $enc = mrl_compress(\@symbols); # Does Arithmetic coding my $enc = mrl_compress($str, \&create_ac_entry); my $enc = mrl_compress(\@symbols, \&create_ac_entry); ``` A fast compression method, using the following pipeline: 1. mtf_encode 2. zrle_encode 3. rle4_encode 4. create_huffman_entry It accepts an arbitrary array-ref of non-negative integer values as input. ## mrl\_decompress / mrl\_decompress\_symbolic ```perl # With Huffman coding my $data = mrl_decompress($fh); my $data = mrl_decompress($string); # Symbolic, with Huffman coding my $symbols = mrl_decompress_symbolic($fh); my $symbols = mrl_decompress_symbolic($string); # Symbolic, with Arithmetic coding my $symbols = mrl_decompress_symbolic($fh, \&decode_ac_entry); my $symbols = mrl_decompress_symbolic($string, \&decode_ac_entry); ``` Inverse of `mrl_decompress()` and `mrl_compress_symbolic()`. # INTERFACE FOR MEDIUM-LEVEL FUNCTIONS ## frequencies ```perl my $freq = frequencies(\@symbols); ``` Returns an hash ref dictionary with frequencies, given an array-ref of symbols. ## deltas ```perl my $deltas = deltas(\@integers); ``` Computes the differences between consecutive integers, returning an array. ## accumulate ```perl my $integers = accumulate(\@deltas); ``` Inverse of `deltas()`. ## delta\_encode ```perl my $string = delta_encode(\@integers); ``` Encodes a sequence of integers (including negative integers) using Delta + Run-length + Elias omega coding, returning a binary string. Delta encoding calculates the difference between consecutive integers in the sequence and encodes these differences using Elias omega coding. When it's beneficial, runs of identical symbols are collapsed with RLE. This method supports both positive and negative integers. ## delta\_decode ```perl # Given a file-handle my $integers = delta_decode($fh); # Given a string my $integers = delta_decode($string); ``` Inverse of `delta_encode()`. ## fibonacci\_encode ```perl my $string = fibonacci_encode(\@symbols); ``` Encodes a sequence of non-negative integers using Fibonacci coding, returning a binary string. ## fibonacci\_decode ```perl # Given a file-handle my $symbols = fibonacci_decode($fh); # Given a binary string my $symbols = fibonacci_decode($string); ``` Inverse of `fibonacci_encode()`. ## elias\_gamma\_encode ```perl my $string = elias_gamma_encode(\@symbols); ``` Encodes a sequence of non-negative integers using Elias Gamma coding, returning a binary string. ## elias\_gamma\_decode ```perl # Given a file-handle my $symbols = elias_gamma_decode($fh); # Given a binary string my $symbols = elias_gamma_decode($string); ``` Inverse of `elias_gamma_encode()`. ## elias\_omega\_encode ```perl my $string = elias_omega_encode(\@symbols); ``` Encodes a sequence of non-negative integers using Elias Omega coding, returning a binary string. ## elias\_omega\_decode ```perl # Given a file-handle my $symbols = elias_omega_decode($fh); # Given a binary string my $symbols = elias_omega_decode($string); ``` Inverse of `elias_omega_encode()`. ## abc\_encode ```perl my $string = abc_encode(\@symbols); ``` Encodes a sequence of non-negative integers using the Adaptive Binary Concatenation encoding method. This method is particularly effective in encoding a sequence of integers that are in ascending order or have roughly the same size in binary. ## abc\_decode ```perl # Given a file-handle my $symbols = abc_decode($fh); # Given a binary string my $symbols = abc_decode($string); ``` Inverse of `abc_encode()`. ## obh\_encode ```perl # With Huffman Coding my $string = obh_encode(\@symbols); # With Arithmetic Coding my $string = obh_encode(\@symbols, \&create_ac_entry); ``` Encodes a sequence of non-negative integers using offset bits and Huffman coding. This method is particularly effective in encoding a sequence of moderately large random integers, such as the list of distances returned by `lzss_encode()`. ## obh\_decode ```perl # Given a file-handle my $symbols = obh_decode($fh); # Huffman decoding my $symbols = obh_decode($fh, \&decode_ac_entry); # Arithmetic decoding # Given a binary string my $symbols = obh_decode($string); # Huffman decoding my $symbols = obh_decode($string, \&decode_ac_entry); # Arithmetic decoding ``` Inverse of `obh_encode()`. ## bwt\_encode ```perl my ($bwt, $idx) = bwt_encode($string); my ($bwt, $idx) = bwt_encode($string, $lookahead_len); ``` Applies the Burrows-Wheeler Transform (BWT) to a given string. ## bwt\_decode ```perl my $string = bwt_decode($bwt, $idx); ``` Reverses the Burrows-Wheeler Transform (BWT) applied to a string. The function returns the original string. ## bwt\_encode\_symbolic ```perl my ($bwt_symbols, $idx) = bwt_encode_symbolic(\@symbols); ``` Applies the Burrows-Wheeler Transform (BWT) to a sequence of symbolic elements. ## bwt\_decode\_symbolic ```perl my $symbols = bwt_decode_symbolic(\@bwt_symbols, $idx); ``` Reverses the Burrows-Wheeler Transform (BWT) applied to a sequence of symbolic elements. ## mtf\_encode ```perl my $mtf = mtf_encode(\@symbols, \@alphabet); my ($mtf, $alphabet) = mtf_encode(\@symbols); ``` Performs Move-To-Front (MTF) encoding on a sequence of symbols. The function returns the encoded MTF sequence and the sorted list of unique symbols in the input data, representing the alphabet. Optionally, the alphabet can be provided as a second argument. When two arguments are provided, only the MTF sequence is returned. ## mtf\_decode ```perl my $symbols = mtf_decode(\@mtf, \@alphabet); ``` Inverse of `mtf_encode()`. ## encode\_alphabet / encode\_alphabet\_256 ```perl my $string = encode_alphabet(\@alphabet); # supports arbitrarily large symbols my $string = encode_alphabet_256(\@alphabet); # limited to symbols [0..255] ``` Encode a sorted alphabet of symbols into a binary string. ## decode\_alphabet / decode\_alphabet\_256 ```perl my $alphabet = decode_alphabet($fh); my $alphabet = decode_alphabet($string); my $alphabet = decode_alphabet_256($fh); my $alphabet = decode_alphabet_256($string); ``` Decodes an encoded alphabet, given a file-handle or a binary string, returning an array-ref of symbols. Inverse of `encode_alphabet()`. ## run\_length ```perl my $rl = run_length(\@symbols); my $rl = run_length(\@symbols, $max_run); ``` Performs Run-Length Encoding (RLE) on a sequence of symbolic elements. It takes two parameters: `\@symbols`, representing an array of symbols, and `$max_run`, indicating the maximum run length allowed. The function returns a 2D-array, with pairs: `[symbol, run_length]`, such that the following code reconstructs the `\@symbols` array: ```perl my @symbols = map { ($_->[0]) x $_->[1] } @$rl; ``` By default, the maximum run-length is unlimited. ## rle4\_encode ```perl my $rle4 = rle4_encode($string); my $rle4 = rle4_encode(\@symbols); my $rle4 = rle4_encode(\@symbols, $max_run); ``` Performs Run-Length Encoding (RLE) on a sequence of symbolic elements, specifically designed for runs of four or more consecutive symbols. It takes two parameters: `\@symbols`, representing an array of symbols, and `$max_run`, indicating the maximum run length allowed during encoding. The function returns the encoded RLE sequence as an array-ref of symbols. By default, the maximum run-length is limited to `255`. ## rle4\_decode ```perl my $symbols = rle4_decode(\@rle4); my $symbols = rle4_decode($rle4_string); ``` Inverse of `rle4_encode()`. ## zrle\_encode ```perl my $zrle = zrle_encode(\@symbols); ``` Performs Zero-Run-Length Encoding (ZRLE) on a sequence of symbolic elements, returning the encoded ZRLE sequence as an array-ref of symbols. This function efficiently encodes runs of zeros, but also increments each symbol by `1`. ## zrle\_decode ```perl my $symbols = zrle_decode($zrle); ``` Inverse of `zrle_encode()`. ## ac\_encode ```perl my ($bitstring, $freq) = ac_encode(\@symbols); ``` Performs Arithmetic Coding on the provided symbols. It takes a single parameter, `\@symbols`, representing the symbols to be encoded. The function returns two values: `$bitstring`, which is a string of 1s and 0s, and `$freq`, representing the frequency table used for encoding. ## ac\_decode ```perl my $symbols = ac_decode($bits_fh, \%freq); my $symbols = ac_decode($bitstring, \%freq); ``` Performs Arithmetic Coding decoding using the provided frequency table and a string of 1s and 0s. Inverse of `ac_encode()`. It takes two parameters: `$bitstring`, representing a string of 1s and 0s containing the arithmetic coded data, and `\%freq`, representing the frequency table used for encoding. The function returns the decoded sequence of symbols. ## adaptive\_ac\_encode ```perl my ($bitstring, $alphabet) = adaptive_ac_encode(\@symbols); ``` Performs Adaptive Arithmetic Coding on the provided symbols. It takes a single parameter, `\@symbols`, representing the symbols to be encoded. The function returns two values: `$bitstring`, which is a string of 1s and 0s, and `$alphabet`, which is an array-ref of distinct sorted symbols. ## adaptive\_ac\_decode ```perl my $symbols = adaptive_ac_decode($bits_fh, \@alphabet); my $symbols = adaptive_ac_decode($bitstring, \@alphabet); ``` Performs Adaptive Arithmetic Coding decoding using the provided frequency table and a string of 1s and 0s. It takes two parameters: `$bitstring`, representing a string of 1s and 0s containing the adaptive arithmetic coded data, and `\@alphabet`, representing the array of distinct sorted symbols that appear in the encoded data. The function returns the decoded sequence of symbols. ## lzw\_encode ```perl my $symbols = lzw_encode($string); ``` Performs Lempel-Ziv-Welch (LZW) encoding on the provided string. It takes a single parameter, `$string`, representing the data to be encoded. The function returns an array-ref of symbols. ## lzw\_decode ```perl my $string = lzw_decode(\@symbols); ``` Performs Lempel-Ziv-Welch (LZW) decoding on the provided symbols. Inverse of `lzw_encode()`. The function returns the decoded string. # INTERFACE FOR LOW-LEVEL FUNCTIONS ## crc32 ```perl my $int32 = crc32($data); my $int32 = crc32($data, $prev_crc32); ``` Compute the CRC32 of a given string. ## read\_bit ```perl my $bit = read_bit($fh, \$buffer); ``` Reads a single bit from a file-handle `$fh` (MSB order). The function stores the extra bits inside the `$buffer`, reading one character at a time from the file-handle. ## read\_bit\_lsb ```perl my $bit = read_bit_lsb($fh, \$buffer); ``` Reads a single bit from a file-handle `$fh` (LSB order). The function stores the extra bits inside the `$buffer`, reading one character at a time from the file-handle. ## read\_bits ```perl my $bitstring = read_bits($fh, $bits_len); ``` Reads a specified number of bits (`$bits_len`) from a file-handle (`$fh`) and returns them as a string, in MSB order. ## read\_bits\_lsb ```perl my $bitstring = read_bits_lsb($fh, $bits_len); ``` Reads a specified number of bits (`$bits_len`) from a file-handle (`$fh`) and returns them as a string, in LSB order. ## int2bits ```perl my $bitstring = int2bits($symbol, $size) ``` Convert a non-negative integer to a bitstring of width `$size`, in MSB order. ## int2bits\_lsb ```perl my $bitstring = int2bits_lsb($symbol, $size) ``` Convert a non-negative integer to a bitstring of width `$size`, in LSB order. ## int2bytes ```perl my $string = int2bytes($symbol, $size); ``` Convert a non-negative integer to a byte-string of width `$size`, in MSB order. ## int2bytes\_lsb ```perl my $string = int2bytes_lsb($symbol, $size); ``` Convert a non-negative integer to a byte-string of width `$size`, in LSB order. ## bits2int ```perl my $integer = bits2int($fh, $size, \$buffer); ``` Read `$size` bits from a file-handle `$fh` and convert them to an integer, in MSB order. Inverse of `int2bits()`. The function stores the extra bits inside the `$buffer`, reading one character at a time from the file-handle. ## bits2int\_lsb ```perl my $integer = bits2int_lsb($fh, $size, \$buffer); ``` Read `$size` bits from a file-handle `$fh` and convert them to an integer, in LSB order. Inverse of `int2bits_lsb()`. The function stores the extra bits inside the `$buffer`, reading one character at a time from the file-handle. ## bytes2int ```perl my $integer = bytes2int($fh, $n); my $integer = bytes2int($str, $n); ``` Read `$n` bytes from a file-handle `$fh` or from a string `$str` and convert them to an integer, in MSB order. ## bytes2int\_lsb ```perl my $integer = bytes2int_lsb($fh, $n); my $integer = bytes2int_lsb($str, $n); ``` Read `$n` bytes from a file-handle `$fh` or from a string `$str` and convert them to an integer, in LSB order. ## string2symbols ```perl my $symbols = string2symbols($string) ``` Returns an array-ref of code points, given a string. ## symbols2string ```perl my $string = symbols2string(\@symbols) ``` Returns a string, given an array-ref of code points. ## read\_null\_terminated ```perl my $string = read_null_terminated($fh) ``` Read a string from file-handle `$fh` that ends with a NULL character ("\\0"). ## binary\_vrl\_encode ```perl my $bitstring_enc = binary_vrl_encode($bitstring); ``` Given a string of 1s and 0s, returns back a bitstring of 1s and 0s encoded using variable run-length encoding. ## binary\_vrl\_decode ```perl my $bitstring = binary_vrl_decode($bitstring_enc); ``` Given an encoded bitstring, returned by `binary_vrl_encode()`, gives back the decoded string of 1s and 0s. ## bwt\_sort ```perl my $indices = bwt_sort($string); my $indices = bwt_sort($string, $lookahead_len); ``` Low-level function that sorts the rotations of a given string using the Burrows-Wheeler Transform (BWT) algorithm. It takes two parameters: `$string`, which is the input string to be transformed, and `$LOOKAHEAD_LEN` (optional), representing the length of look-ahead during sorting. The function returns an array-ref of indices. There is probably no need to call this function explicitly. Use `bwt_encode()` instead! ## bwt\_sort\_symbolic ```perl my $indices = bwt_sort_symbolic(\@symbols); ``` Low-level function that sorts the rotations of a sequence of symbolic elements using the Burrows-Wheeler Transform (BWT) algorithm. It takes a single parameter `\@symbols`, which represents the input sequence of symbolic elements. The function returns an array of indices. There is probably no need to call this function explicitly. Use `bwt_encode_symbolic()` instead! ## huffman\_from\_freq ```perl my $dict = huffman_from_freq(\%freq); my ($dict, $rev_dict) = huffman_from_freq(\%freq); ``` Low-level function that constructs Huffman prefix codes, based on the frequency of symbols provided in a hash table. It takes a single parameter, `\%freq`, representing the hash table where keys are symbols, and values are their corresponding frequencies. The function returns two values: `$dict`, which is the mapping of symbols to Huffman codes, and `$rev_dict`, which holds the reverse mapping of Huffman codes to symbols. The prefix codes are in canonical form, as defined in RFC 1951 (Section 3.2.2). ## huffman\_from\_symbols ```perl my $dict = huffman_from_symbols(\@symbols); my ($dict, $rev_dict) = huffman_from_symbols(\@symbols); ``` Low-level function that constructs Huffman prefix codes, given an array-ref of symbols. It takes a single parameter, `\@symbols`, from which it computes the frequency of each symbol and generates the corresponding Huffman prefix codes. The function returns two values: `$dict`, which is the mapping of symbols to Huffman codes, and `$rev_dict`, which holds the reverse mapping of Huffman codes to symbols. The prefix codes are in canonical form, as defined in RFC 1951 (Section 3.2.2). ## huffman\_from\_code\_lengths ```perl my $dict = huffman_from_code_lengths(\@code_lengths); my ($dict, $rev_dict) = huffman_from_code_lengths(\@code_lengths); ``` Low-level function that constructs a dictionary of canonical prefix codes, given an array of code lengths, as defined in RFC 1951 (Section 3.2.2). It takes a single parameter, `\@code_lengths`, where entry `$i` in the array corresponds to the code length for symbol `$i`. The function returns two values: `$dict`, which is the mapping of symbols to Huffman codes, and `$rev_dict`, which holds the reverse mapping of Huffman codes to symbols. ## huffman\_encode ```perl my $bitstring = huffman_encode(\@symbols, $dict); ``` Low-level function that performs Huffman encoding on a sequence of symbols using a provided dictionary, returned by `huffman_from_freq()`. It takes two parameters: `\@symbols`, representing the sequence of symbols to be encoded, and `$dict`, representing the Huffman dictionary mapping symbols to their corresponding Huffman codes. The function returns a concatenated string of 1s and 0s, representing the Huffman-encoded sequence of symbols. ## huffman\_decode ```perl my $symbols = huffman_decode($bitstring, $rev_dict); ``` Low-level function that decodes a Huffman-encoded binary string into a sequence of symbols using a provided reverse dictionary. It takes two parameters: `$bitstring`, representing the Huffman-encoded string of 1s and 0s, as returned by `huffman_encode()`, and `$rev_dict`, representing the reverse dictionary mapping Huffman codes to their corresponding symbols. The function returns the decoded sequence of symbols as an array-ref. ## lz77\_encode / lz77\_encode\_symbolic ```perl my ($literals, $distances, $lengths, $matches) = lz77_encode($string); my ($literals, $distances, $lengths, $matches) = lz77_encode(\@symbols); ``` Low-level function that combines LZSS with ideas from the LZ4 method. The function returns four values: ```perl $literals # array-ref of uncompressed symbols $distances # array-ref of back-reference distances $lengths # array-ref of literal lengths $matches # array-ref of match lengths ``` The output can be decoded with `lz77_decode()` and `lz77_decode_symbolic()`, respectively. ## lz77\_decode / lz77\_decode\_symbolic ```perl my $string = lz77_decode(\@literals, \@distances, \@lengths, \@matches); my $symbols = lz77_decode_symbolic(\@literals, \@distances, \@lengths, \@matches); ``` Low-level function that performs decoding using the provided literals, distances, lengths and matches, returned by LZ77 encoding. Inverse of `lz77_encode()` and `lz77_encode_symbolic()`, respectively. ## lzss\_encode / lzss\_encode\_fast / lzss\_encode\_symbolic / lzss\_encode\_fast\_symbolic ```perl # Standard version my ($literals, $distances, $lengths) = lzss_encode($data); my ($literals, $distances, $lengths) = lzss_encode(\@symbols); # Faster version my ($literals, $distances, $lengths) = lzss_encode_fast($data); my ($literals, $distances, $lengths) = lzss_encode_fast(\@symbols); ``` Low-level function that applies the LZSS (Lempel-Ziv-Storer-Szymanski) algorithm on the provided data. The function returns three values: ```perl $literals # array-ref of uncompressed symbols $distances # array-ref of back-reference distances $lengths # array-ref of match lengths ``` The output can be decoded with `lzss_decode()` and `lzss_decode_symbolic()`, respectively. ## lzss\_decode / lzss\_decode\_symbolic my $string = lzss_decode(\@literals, \@distances, \@lengths); my $symbols = lzss_decode_symbolic(\@literals, \@distances, \@lengths); Low-level function that decodes the LZSS encoding, using the provided literals, distances, and lengths of matched sub-strings. Inverse of `lzss_encode()` and `lzss_encode_fast()`. ## deflate\_encode ```perl # Returns a binary string my $string = deflate_encode(\@literals, \@distances, \@lengths); my $string = deflate_encode(\@literals, \@distances, \@lengths, \&create_ac_entry); ``` Low-level function that encodes the results returned by `lzss_encode()` and `lzss_encode_fast()`, using a DEFLATE-like approach, combined with Huffman coding. ## deflate\_decode ```perl # Huffman decoding my ($literals, $distances, $lengths) = deflate_decode($fh); my ($literals, $distances, $lengths) = deflate_decode($string); # Arithmetic decoding my ($literals, $distances, $lengths) = deflate_decode($fh, \&decode_ac_entry); my ($literals, $distances, $lengths) = deflate_decode($string, \&decode_ac_entry); ``` Inverse of `deflate_encode()`. ## make\_deflate\_tables ```perl my ($DISTANCE_SYMBOLS, $LENGTH_SYMBOLS, $LENGTH_INDICES) = make_deflate_tables($max_dist, $max_len); ``` Low-level function that returns a list of tables used in encoding the relative back-reference distances and lengths returned by `lzss_encode()` and `lzss_encode_fast()`. When no arguments are provided: ```perl $max_dist = $Compression::Util::LZ_MAX_DIST $max_len = $Compression::Util::LZ_MAX_LEN ``` There is no need to call this function explicitly. Use `deflate_encode()` instead! ## find\_deflate\_index ```perl my $index = find_deflate_index($value, $DISTANCE_SYMBOLS); ``` Low-level function that returns the index inside the DEFLATE tables for a given value. # EXPORT Each function can be exported individually, as: ```perl use Compression::Util qw(bwt_compress); ``` By specifying the **:all** keyword, will export all the exportable functions: ```perl use Compression::Util qw(:all); ``` Nothing is exported by default. # EXAMPLES The functions can be combined in various ways, easily creating novel compression methods, as illustrated in the following examples. ## Combining LZSS + MRL compression: ```perl my $enc = lzss_compress($str, \&mrl_compress_symbolic); my $dec = lzss_decompress($enc, \&mrl_decompress_symbolic); ``` ## Combining LZ77 + OBH encoding: ```perl my $enc = lz77_compress($str, \&obh_encode); my $dec = lz77_decompress($enc, \&obh_decode); ``` ## Combining LZSS + symbolic BWT compression: ```perl my $enc = lzss_compress($str, \&bwt_compress_symbolic); my $dec = lzss_decompress($enc, \&bwt_decompress_symbolic); ``` ## Combining BWT + symbolic LZSS: ```perl my $enc = bwt_compress($str, \&lzss_compress_symbolic); my $dec = bwt_decompress($enc, \&lzss_decompress_symbolic); ``` ## Combining LZW + Fibonacci encoding: ```perl my $enc = lzw_compress($str, \&fibonacci_encode); my $dec = lzw_decompress($enc, \&fibonacci_decode); ``` ## Combining BWT + symbolic LZ77 + symbolic MRL: ```perl my $enc = bwt_compress($str, sub ($s) { lz77_compress_symbolic($s, \&mrl_compress_symbolic) }); my $dec = bwt_decompress($enc, sub ($s) { lz77_decompress_symbolic($s, \&mrl_decompress_symbolic) }); ``` ## Combining LZ77 + BWT compression + Fibonacci encoding + Huffman coding + OBH encoding + MRL compression: ```perl # Compression my $enc = do { my ($literals, $distances, $lengths, $matches) = lz77_encode($str); bwt_compress(symbols2string($literals)) . fibonacci_encode($lengths) . create_huffman_entry($matches) . obh_encode($distances, \&mrl_compress_symbolic); }; # Decompression my $dec = do { open my $fh, '<:raw', \$enc; my $literals = string2symbols(bwt_decompress($fh)); my $lengths = fibonacci_decode($fh); my $matches = decode_huffman_entry($fh); my $distances = obh_decode($fh, \&mrl_decompress_symbolic); lz77_decode($literals, $distances, $lengths, $matches); }; ``` # REFERENCES - DEFLATE Compressed Data Format Specification * [https://datatracker.ietf.org/doc/html/rfc1951](https://datatracker.ietf.org/doc/html/rfc1951) - GZIP file format specification * [https://datatracker.ietf.org/doc/html/rfc1952](https://datatracker.ietf.org/doc/html/rfc1952) - BZIP2 Format Specification, by Joe Tsai: * [https://github.com/dsnet/compress/blob/master/doc/bzip2-format.pdf](https://github.com/dsnet/compress/blob/master/doc/bzip2-format.pdf) - Data Compression (Summer 2023) - Lecture 4 - The Unix 'compress' Program: * [https://youtube.com/watch?v=1cJL9Va80Pk](https://youtube.com/watch?v=1cJL9Va80Pk) - Data Compression (Summer 2023) - Lecture 5 - Basic Techniques: * [https://youtube.com/watch?v=TdFWb8mL5Gk](https://youtube.com/watch?v=TdFWb8mL5Gk) - Data Compression (Summer 2023) - Lecture 11 - DEFLATE (gzip): * [https://youtube.com/watch?v=SJPvNi4HrWQ](https://youtube.com/watch?v=SJPvNi4HrWQ) - Data Compression (Summer 2023) - Lecture 12 - The Burrows-Wheeler Transform (BWT): * [https://youtube.com/watch?v=rQ7wwh4HRZM](https://youtube.com/watch?v=rQ7wwh4HRZM) - Data Compression (Summer 2023) - Lecture 13 - BZip2: * [https://youtube.com/watch?v=cvoZbBZ3M2A](https://youtube.com/watch?v=cvoZbBZ3M2A) - Data Compression (Summer 2023) - Lecture 15 - Infinite Precision in Finite Bits: * [https://youtube.com/watch?v=EqKbT3QdtOI](https://youtube.com/watch?v=EqKbT3QdtOI) - Information Retrieval WS 17/18, Lecture 4: Compression, Codes, Entropy: * [https://youtube.com/watch?v=A\_F94FV21Ek](https://youtube.com/watch?v=A_F94FV21Ek) - COMP526 7-5 SS7.4 Run length encoding: * [https://youtube.com/watch?v=3jKLjmV1bL8](https://youtube.com/watch?v=3jKLjmV1bL8) - COMP526 Unit 7-6 2020-03-24 Compression - Move-to-front transform: * [https://youtube.com/watch?v=Q2pinaj3i9Y](https://youtube.com/watch?v=Q2pinaj3i9Y) - Basic arithmetic coder in C++: * [https://github.com/billbird/arith32](https://github.com/billbird/arith32) # REPOSITORY - GitHub: [https://github.com/trizen/Compression-Util](https://github.com/trizen/Compression-Util) # BUGS AND LIMITATIONS Please report any bugs or feature requests to: [https://github.com/trizen/Compression-Util](https://github.com/trizen/Compression-Util). # AUTHOR Daniel "Trizen" Șuteu `<trizen@cpan.org>` # ACKNOWLEDGEMENTS Special thanks to professor Bill Bird for the awesome YouTube lectures on data compression. # LICENSE This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself, either Perl version 5.38.2 or, at your option, any later version of Perl 5 you may have available.